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The effect of an applied transverse magnetic field on the development of a two- 
dimensional jet of incompressible fluid is examined. The jet is prescribed in terms 
of its mass flux pQo and its lateral scale d at an initial section x = 0. The three 
dimensionless numbers characterizing the problem are a Reynolds number 
R = Qo/v,  a magnetic Reynolds number R, = pcaQ,, and a magnetic interaction 
parameter N = ~ B $ d ~ / p & , ,  where p represents density, B conductivity, p per- 
meability and Bo applied field strength, and it is assumed that 

Rm& 1, R $ 1 ,  N &  1. 

It is shown that when M2 = RN 1, an inviscid treatment is appropriate, 
and that the effect of the magnetic field is then to destroy the jet momentum 
within a distance of order N-l in the downstream direction. A general solution 
for inviscid development is obtained, and it is shown that a large class of velocity 
profiles (though not all of them) are self-preserving. 

When M2 < 1, it is shown that the viscous similarity solution obtained by 
Moreau (1963a, b )  is relevant. This solution is re-derived and re-interpreted; 
it implies that the jet momentum is destroyed within a distance of order RiN-2 
in the downstream direction. 

Some further aspects of the jet annihilation problem are qualitatively discussed 
in $4, viz. the nature of the overall flow field, the effect of the presence of distant 
boundaries, the effect of increasing R, to order unity and greater, and the effect of 
oblique injection. Finally the development of a jet of conducting fluid into a non- 
conducting environment is considered; in this case the jet is not stopped by the 
magnetic field unless a return path outside the fluid for the induced current is 
available. 

1. Introduction 
The effect of a transverse magnetic field on the development of a two-dimen- 

sional submerged jet of conducting fluid has been examined by Moreau ( 1 9 6 3 ~ ~ ~  b) .  
He obtained a similarity solution of the equations of magnetohydrodynamics 
(in boundary-layer approximation) representing a balance between inertia, 
magnetic and viscous forces. The solution revealed that the magnetic field tends 
to destroy the momentum of the jet and to cause it to diverge at  a certain finite 
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distance downstream from its point of origin. The same solution has been 
obtained by Tsinober & Shcherbinin (1965). 

The solution is of great interest in that it is one of the very few in which fully 
non-linear effects compete with magnetic and viscous effects to establish the 
pattern of flow. However, the solution has certain limitations which have not as 
yet been fully appreciated. Like any similarity solution, the Moreau solution 
must be understood as being asymptotically valid a t  a large distance from the 
momentum source. However, the fact that the jet diverges at a certain finite 
distance downstream from the source means that there may not be sufficient 
space for the jet to settle down to its asymptotic form before it diverges. It will 
emerge from the analysis of this paper that the condition for the flow to settle 
down to Moreau's similarity form before the jet diverges is that the Hartmann 
number M = (EN)$ should be small. If M % 1 then the Moreau solution is 
irrelevant, and an alternative description of the flow is required. It is the purpose 
of this paper to provide such a description. The analysis applies in particular to 
the inviscid Iimit v --f 0 (keeping all other parameters fixed). 

Consider for definiteness the situation depicted in figure 1 a (dimensional vari- 
ables are distinguished by an asterisk). Incompressible conducting fluid fills the 
space x* > 0, Iy*I < yod, Iz*I < zod, and a uniform magnetic field B, = (0, B,, 0) 
is externally maintained. Fluid is steadily introduced across the boundary x* = 0 
with x*-component of velocity U(y*/d); the y*-component of velocity on x* = 0 
will for the moment remain unspecified. It will be supposed that U(y*/d) is 
summetrical about y* = 0, has a single maximum Uo at y* = 0, and has a finite 
flwt W 

2Q0 = J-W U dy* = 2U,d say, (1)  

where d is the 'lateral scale' of U(y*/d). We suppose, moreover, that yo, zo > 1; in 
fact we shall be interested in the nature of the flow at fixed values of the dimen- 
sionless variables y = y*/d, z = z*/d in the limit yo, zo+ 00. It is to be expected 
that the (dimensionless) velocity field u(x) becomes two-dimensional in the limit 
zo -+ co, i.e. that 

u = (u@,y),v(x,y)) = (a$/aY, - a l C . / w ,  (2) 

where Qo @(x, y) is the stream-function of the flow. It is reasonable to suppose that 
@(s, y) is insensitive to the nature of the boundaries y = f yo, z = 5 z,, e.g. as to 
whether they are porous or impermeable, electrically conducting or insulating, 
etc. It will appear below, however, that the pressure distribution is to  some extent 
affected by the conditions on these distant boundaries. Possible effects due to 
finite values of yo will be considered in 5 4. 

The prescribed condition on the boundary x = 0 is perhaps somewhat artificial, 
and requires comment. It may be imagined that the boundary x = 0 is a rigid 
sheet of material of variable porosity proportional to U(y); if fluid is continually 
supplied to the region x < 0 at  a pressure higher than the pressure at x = 0 + , 
then the steady velocity profile U(y) can (in principle) be maintained. In  practice, 
the simplest possibility is that the fluid is supplied through a slit [ y*[ < d, in the 

t The momentum flux defined in (10) below is then also necessarily finite. 
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plane wall 2 = 0 (figure l b ) .  In  this case, viscous forces may affect the velocity 
profile U(y), although perhaps the most reasonable possibility is that the profile 
in the slit is an undeveloped 'top-hat' profile U(y) = const; this possibility is all 
the more reasonable if the Hartmann number based on d is large, since the well- 
known Hartmann profile for channel flow then has the same top-hat structure; 
(d = d, in this case). 

I\\\\\\\\\\\\' 

2 

t Bo 

It will be assumed that 
R, = , ~ g Q o  4 1, (3) 

where CT is the conductivity and ,u the permeability of the fluid, and distortion of 
the magnetic field will be neglected (Shercliff 1965, $3.8). (Qualitative effects of 
increasing R, will be considered in $4.3.) 

The governing equations are then 

pu*.V*u* = -V*p*+j*AB,+yV*2u*, (4) 

j* = CT(E*+U*AB,), ( 5 )  

v*.u*  = v*.j* = 0. (6) 

Moreover, under steady conditions, the electric field E* is derivable from a 
potential, E* = -V*$*, and equations (5) and (6) together imply that 

V*2$* = V*.(U*AB,) = -B,.(V*AU*). (7) 
6-2 
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Hence in the two-dimensional region of the flow (i.e. everywhere except near 
the distant boundaries z = kz , ) ,  V*2q5* = 0. The electric field in the two- 
dimensional region is therefore unaffected by the flow in that region and is 
determined only by the conditions near the distant boundaries z = 4 z,. Since the 
fieId E* is independent of z far from these boundaries, we must have 

aE;/ax* = aE*,laz* = 0, aE;/ay* = aE;/az* = 0, 

so that E; = const. The value of E,* is determined by the electrical properties of 
the boundaries z = f zo, y = f yo (see the last paragraph of this section). 

In terms of the dimensionless stream function $(x, y), the curl of (4) reduces to 
the dimensionless form 

where R = Qo/v, N = cBid2/pQo, (9) 
the Reynolds number and magnetic interaction parameter respectively. 

momentum flux at x = 0, 
If the flow in the region x > 0 is to have the character of a jet, then clearly the 

(where k is a constant of order unity characterizing the shape of the initial profile} 
must be sufficiently large for the inertia force to dominate (over a considerable 
part of the flow field) over both the viscous force and the magnetic drag, 
represented by the term N a2$/ay2 in (8). It will therefore be assumed? that 

N < l ,  R B I .  (11) 

The conditions (3) and (11) are realistic for mercury jets in transverse fields 
(Moreau 1966a, b). Under these conditions, it  is to be expected that the jet will 
have EL ‘long thin’ character, at any rate for some distance downstream, and the 
usual boundary-layer approximation, V2 M P/ayZ is legitimate; it may of course 
transpire that the approximation breaks down in certain regions of the flow 
field. Equation (8) then takes the approximate form 

which may be integrated once with respect to y to give 

The arbitrary function of x which appears on integrating has been set equal to 
zero, to  conform with the Conditions that u (= a$/ay) and the derivatives azL/ay, 
a2u/ay2 should vanish as y -+ k co. $ 

t Some comments on the nature of the flow if N + 1 are given in $4.2. 
$ A sufficient condition would be u. = 0(1y\-~) as IyJ + 00; this condition is satisfied by 

the initial profile U(y), and the subsequent analysis c o n h s  that it is invariably satisfied 
by Mz, Y) (z > 0). 
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Equation (13) is simply the x-component of equation (4) in the boundary- 
layer approximation, and it is evident that the vanishing of the arbitrary function 
of x outside the jet region is equivalent to the condition 

ap"lax" = - vEZ B,, (14) 

which follows likewise from (5) and (6) with u = 0; if Ez =l= 0, a pressure gradient 
8p*/ax* is established to counterbalance the j*AB, force outside the jet. As 
mentioned above, the presence of an electric field has no effect on the velocity 
field, but it does affect the pressure distribution. 

In  terms of the velocity distribution u, equation (13) takes the form 

(U . v) u = - NU + R-I a2ulay2. (15) 

It is easy to see that this implies that the jet momentum is destroyed by the 
magnetic field. For, integrating from y = - oc) to y = + 00 we get 

or aPlax = - NQ, (16) 

where F and Q are the (non-dimensionalized) momentum and flux at the section x. 
Thus, as long as Q > 0, F decreases monotonically with increasing x. This 
decrease is directly due to the magnetic drag experienced by each fluid particle; 
it is also affected indirectly by viscous forces, in that they can (through viscous 
entrainment) locally increase the value of Q and so accelerate the decay of F 
(see 0 3). Incompressibility of course requires that the destruction of momentum 
must be accompanied by a spreading of the jet in the lateral directions; this 
spreading is symmetrical due to the assumed symmetry of conditions at x = 0. 
At some stage, the assumption ajay 9 a/ax must break down; however, provided 
N is sufficiently small, equation (16) suggests that the jet will retain its jet-like 
character for some considerable distance downstream. 

The destruction of jet momentum raises the question of how the over-all 
momentum balance of the fluid and its boundaries and any external electric 
circuits is maintained. A detailed description would require a consideration of the 
precise effects of the boundaries y = & yo, z = -t z,,, with the attendant three- 
dimensional difficulties. However, the essential nature of the balance may be 
understood from the following simple arguments. The jet momentum is destroyed 
essentially because a current j, = auB, is induced in the jet region, and the 
associated Lorentz force - aBi u is retarding. The current circuit must however 
be completed in some manner that is determined by the distant boundary condi- 
tions. The return path for the current may be either through the fluid outside the 
jet region (as must happen, for example, if all the distant boundaries are insu- 
lating), or through the boundaries if they are perfectly conducting. In  the former 
case, there must exist an electric field E,* and an adverse pressure gradient given 
by (14); the momentum balance is then provided by the pressure distribution 
that must be applied on the plane x = 0 to maintain the flow. In  the latter case 
the integrated Lorentz force in the jet is balanced by a net Lorentz force acting 
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on the boundaries that conduct the return current. If the boundaries have finite 
conductivity then the return current flows partly through the fluid and partly 
through the boundaries. 

2. Behaviour of an inviscid jet (RN 9 1) 
In the limit v -+ 0, or R + 03, equation (15) becomes, in Lagrangian form, 

Du/Dt = (u.V)u = -Nu. (17) 

(It will appear in retrospect that the necessary condition for the neglect of viscous 
forces is RN 9 1.) The solution is, evidently, 

(18) u(xo, t )  = u(xo, to) e--N(t40), 

for the fluid particle which was at xo at time to. The x co-ordinate of this fluid 
particle a t  time t is determined by 

Dx/Dt = u(xo, t )  = u(xo, to)  e-N(t-to), 

so that 

Hence, as t + 03, a fluid particle initially on x = 0 asymptotically approaches the 
line 

x - x 0 -  - N-lu(x 07 t o ) (1 - e--N(t--lo)). 

x = N-lu(0, yo). 

$(x, Y )  = $(09 Yo);  

(19) 

P o t )  

Since, by definition, $ is constant on streamlines, it  follows that 

hence (18) and (19) may be written in the Eulerian form 

uo($) may be regarded as known in principle (in its range of definition ]$I < 1) 
if u(0,y) = U(y) is known. Then from (21), 

and this implicitly determines $(x, y) .  

meaning of the above solution clear. 

dimensional form, 

The following examples of possible initial profiles will help to make the 

(i) First, suppose that the jet has a top-hat profile at  z = 0, i.e. in non- 

t The analysis is invalid if the initial profile has more than one maximum; for in this 
cme there exist points (0, yl) and (0, yz) with 0 c yl < yz for which u(0, ys) > u(0, yl), 
and according to (20) the streamlines through the points (0, yl) and (0, yt)  would intersect. 
Lateral pressure gradients, represented by the term ap/a?/, must prevent this unphysical 
behaviour; in other words, the boundary-layer assumption slay S a/ax is necessarily 
violated. 
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Then, for y > 0, on x = 0, 

II-= i; I:::i:l 
Hence %I($) = 1 (III-l< I), 
and from (21), 

a $ P Y  = 4 x 3  y) = 1 - l v x  ( \ $ I  < I), 

i.e. 

71 

(25) 

and of course, $(x, - y) = - $(x, y). 

tbl 
FIUmtE 2. Annihilation of an inviscid jet by a transverse magnetic field. The flow is 
symmetric about y = 0, and only the region y > 0 is sketched: (a) top-hat profile at z = 0; 
(a) sech2 profile at z = 0. Boundary-layer theory breaks down between the broken lines 
in both cases. 

The flow is sketched in figure 2a. The flow in the jet region has the same 
streamlines as the inviscid flow near a stagnation point on a rigid boundary. 
Outside the jet, i.e. for Iyf > (1 - ivx)-l, the fluid is at  rest. The magnetic field has 
an effect similar to that of a rigid boundary placed a t  x = N-1. It would be 
misleading, however, to press the analogy too far; the streamlines within the jet 
are identical with the streamlines in a stagnation point flow, but they are not 
identical with the streamlines of the flow in an inviscid jet impinging normally 
on a rigid wall. 

The transverse velocity v = - a$/ax is given, from (26), by 
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Two observations may be made. First, within the limits of an inviscid analysis, 
v cannot be prescribed arbitrarily (in addition to u) on x = 0;  it is determined by 
the solution (27). If the fluid is constrained to have a distribution of v(0,y) 
inconsistent with (27), (e.g. by the use of guide vanes at  the slit) then presumably 
there must be a viscous boundary-layer on the plane x = 0. If the ‘natural’ 
condition v(0, y) = 0 is imposed, then this layer is weak when N < 1. 

Secondly, it is clear that the boundary-layer approximation (ajax < ajay), on 
which the solution (26) is based, breaks down at values of x where v becomes 
comparable in magnitude with u. The maximum value of v at  a section x is 
N ( l -  Nx)-l ,  and this is of the same order of magnitude as u(x ,  0) = 1 - Nx when 
x = N-l- 5 where = O(N-*). The above analysis is therefore valid only for 

1 - N x  9 N:;  (28) 

in particular, i t  tells us nothing about the nature of the flow for x 2 N-l. The 
condition N < 1 may now be seen to be an essential prerequisite for the use of 
boundary-layer methods. 

The breakdown of boundary-layer theory at 1 - N x  = O(N*) is associated with 
the growing importance of pressure forces as this region is approached. The 
pressure distribution that is implied by the solution (26) may be obtained by 
integrating the y-component of (4), and in non-dimensional form this gives, 
within the jet, 

p + Ex = - BN2[y2- (1 - N x ) - ~ ]  + const., 

where E = (aBo d3/pQ3 E,* and p = (d2/pQf)p*. Hence 

ap/ax + E = N3( 1 - N x ) - ~ .  

The term on the right is neglected in the boundary-layer approximation. Its 
actual effect is probably to cause the jet t o  diverge at a value of x a little less than 
the value x = N-l suggested by boundary-layer theory. 

(ii) Suppose now that the initial profile is 

u(0,y) = sech2y, $(O,y) = tanhy, 
so that 
Equation (23) then becomes 

?Ao(+) = 1 -p. 
(29) 

(30) 

@ 
(1 -NX)P 

= ( 1  - Nx)-* tanh-l 

i.e. 
Hence 

The streamlines are sketched in figure 2b .  In this case each streamline has a 
different asymptote, the streamline through (0, yo) having the asymptote 

@(x,  y) = (1 - N x ) )  tanh (1 - Nx)* y. 

u(x,  y) = a$/ay = (1 - Nx) sech2 (1 - Nx)* y. 
(31) 

(32) 

x = N-l sech2 yo. 

The slower moving fluid near the outer edges of the jet is stopped at  an earlier 
stage than the faster moving fluid at  the centre. The flux 2Q = @(x,  00) - $(x, - co) 
decreases continuously from 2 at x = 0 to zero at  x = N-l. 
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The maximum value of 1v1 at the section x is in this case of order N (  1 - Nx)-’, 
and this becomes of the same order as u(x,  0 )  = 1 -Nx where 1 -Nx = O(N3).  
Boundary-layer theory therefore in this case breaks down at a distance O(N-3) 
short of the stopping plane x = N-l. 

(iii) In the examples (i) and (ii) given above, the velocity profiles are self- 
preserving in the sense that in both cases it is possible to  express $(x, y) in the 

(33) 
form 

In case (i), Q = 1, S = (1 - Nx)-1, and 
$(X,Y) = d 4 f  (r) ,  r = Y / S W  

’I (Irl 
f ( r )  = {  1 ( r > l h  } (34) 

while in case (ii), p = (1 - N x ) ~ ,  6 = (1 - Nx)-i ,  and f(q) = tanh ‘I. It is easily 
verified, on inspection of (23), that any initial profile of the form 

- 1  ( r< -1),  

u,(ll.) = 1-  1ll.P ( l @ l <  1,P a O ) ,  (35) 
is likewise self-preserving.t 

example, the initial profile 
Not every initial profile however behaves in this simple way. Consider, for 

2 nY @ ( O ,  y) = - tan-l-. 1 
%(O,Y) = 1 + (ny/2)2’ n 2 

For this case, uo($) = cos2 (n$/2), and integration of (23) leads to the stream- 
function 

n (37) 

which cannot be expressed in the form (33). 
The neglect of viscous forces is justified only if they cause negligible change in 

the jet profile over the distance N-l to the stopping plane. In fact, viscous effects 
diffuse across the width of the velocity profile within a distance of order R down- 
stream from the initial plane x = 0;  hence the inviscid analysis of this section is 
reasonable provided R % N-l ,  i.e. provided 

M 2  = RN = aBid2/pv & 1. (38) 

If this condition is satisfied, then the jet is stopped long before viscous diffusion 
has any significant effect. 

3. The effect of viscous entrainment when Ma = RN < 1 

Suppose now instead that M2 < 1. Then the magnetic force may be expected 
to have negligible influence over a range x 5 O(R) over which viscous diffusion 
thoroughly redistributes the initial distribution of momentum in the jet. In the 
range in which x is large compared with R but still small enough for magnetic 
forces to be negligible (see (51) below), the well-known similarity solution 

t In fact, by substitution of (33) into (13) (with R = a), it may be shown that (35) 
is also a necessary condition for self-preserving flows. 
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(Bickley 1937; Goldstein 1938, $ 57) may be expected to apply. This solution is 
usually expressed in terms of the jet momentum 2F0 defined in (10). In terms of 
the dimensionless variables used in this paper, Bickley ’s solution may be written 

where - zo = O(R) is the ‘virtual origin’ of the jet. The exact value of x,, depends 
on the initial profile on x = 0. The velocity profile corresponding to (39) is 

It is a lucky coincidence that one of the self-preserving profiles considered in the 
inviscid analysis in $ 2  has a similar ‘sech2’ dependence on the transverse co- 
ordinate y. It is for this reason that the solution given by Moreau (1963a, b )  is 
possible. (It may be remarked that there is no self-preserving solution for the 
problem of the two-dimensional jet in an aligned field.) 

The following derivation of the relevant similarity solution differs from that 
given by Moreau in certain respects. The simple Lagrangian form of the solution 
when v = 0 suggests that we use (x, $) as independent variables instead of (x, g)  
(the ‘von Mises transformation’).t Since 

equation (15) takes the form 

Let us look for a similarity solution of the form 

$1 = ul(x)f(r)7 r = $/&(X)* (42) 

Here ul(x) is the velocity on $ = 0 (i.e. on y = 0)  so thatf(0) = 1. Since $varies 
from - Q to Q as y varies from - 00 to 00, the range of 7 is - 1 to 1. Substitution 
of (42) in (41) gives 

u; f - U ! ! 7 f ’  = - N + R -  - ( f f ‘ ) ’ .  
Q Q2 

(43) 

Now suppose that f can be expanded in Taylor series 
W 

f = 2 a2nr2n (a0 = I),  (44) 
n=O 

convergent in some neighbourhood of 7 = 0. The series contains only even 
powers of 7 since the velocity profile is symmetrical. Then 

(45) 1 W 

f f ’  = 2 cnp+l, 

Cn = C 2(n + 1 - r )  a27 a2(n+1-r)* 

n=I 

n 

r=O 
where 

t A similar approach has been explored by Moreau (private communication). 
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On 7 = 0, equation (43) becomes 

ui = - N + 2a2u2,/RQ2; (46) 

moreover, equating the coefficients of q2, in (43) gives 

These equations are clearly independent, and since there are only two functions 
ul(x) and Q(x) at our disposal, we can satisfy only one of the equations (47) in 
addition to (46). Hence the coefficients a2, must vanish for n = 2,3, . . .t (and then 
from (45), C, = 0 for n = 3,4, ...). Hence f = 1 +a2q2. Since the series (44) 
terminates, it  is (trivially) convergent throughout the range 171 < 1, and the 
conditionf(1) = 0 implies a2 = - 1, i.e. 

f ( 7 )  = 1 - r2* (48) 

As might be expected, this corresponds to the ‘ sech2 ’ profile when (42) is expressed 
in terms of ( x ,  9). 

Equation (47), with n = 1, now integrates to give 

where xo is a constant of integration, and (46) then integrates to give 

where C is a further constant of integration. 
Comparing (50) with (40) shows that C = (3ka/32)) ( = O( l)), and that magnetic 

forces are in fact negligible for ( x  + xo) < RaN-2, or, remembering that x,, = O(R) 
and that M2 = RN < 1, for 

x < R~N-).  (51) 

The flux in the jet for x xo is given from (49) by 

This reaches a maximum at 

x = 0.545C2RaN-2 = x,, say, (53) 

and falls to zero at the ‘stopping plane’, 

x = 1.24C$R~N-~ = 1*24C$M*N-1 NN 2 . 2 8 ~ ~  = x8 say. (54) 

This is to be contrasted with the corresponding result x, w N-l valid in the 
inviscid limit M % 1 ($3). When M Q 1, the result (54) clearly indicates the 
extent to which viscous forces can modify the annihilation process. 

a, = 0, . . ., and the condition f( 1) = 0 cannot be satisfied. 
t We must have a2 + 0, since otherwise, equations (47) successively imply a4 = 0, 
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Again, boundary-layer theory breaks down as the stopping plane x = x, is 
approached. It may easily be verified that Iz)(x, 00)l = Id&/dxl is small compared 
with ul(x) only if 

(55) 

when xfx, = 1 -O(NQR-)) ,  pressure forces again modify the final stage of 
annihilation, in a manner whose elucidation requires analysis of the full Navier- 
Stokes equations. 

A sketch of the streamline pattern determined by the solution discussed in this 
section has been given by Moreau (1963a, b)  and by Craya & Moreau (1964). 

i - X/X, B N Q R - ) ;  

4. Speculations on further physical effects associated with jet 

4.1. The nature of the $ow near and beyond the stopping plane 

The fact that a jet is stopped by a transverse field raises the question of what 
happens in the neighbourhood of the stopping plane x = x,. The jet is clearly 
split into two ‘deflected’ jets alined in the k y directions, and centred approxi- 
mately on z = x,. The momentum in each of these deflected jets is of the same 
order as the momentum in the original jet at the section at which boundary-layer 
theory begins to break down, i.e. at z = , (  1 - O(N-4)) for the top-hat inviscid jet 
(M2 >> 1) and at x = x,( 1 - O(NR-4)) for the viscous (Moreau) jet (W < 1 ) .  This 

annihilation 

In  either case, Fl < F,, so that the momentum in the deflected jet is small com- 
pared with the initial momentum in the primary jet. 

In  some respects, the strictly inviscid jet is simplest to visualize (figure 2). 
There is no further magnetic resistance to the flow after deflexion, and the 
deflected jets can flow parallel to the field B, without any complications associated 
with viscous entrainment. 

In  the case of viscous deflexion however, it seems likely that the streamline 
pattern should be qualitatively as indicated in figure 3. For y 9 xs, the flow 
presumably settles down to a weak wall-jet in the y-direction with constant flux 
Q,. At a sufficient distance, inertia forces must be negligible, and the flow is 
controlled by the balance of magnetic and viscous forces. The pattern is again of 
course symmetrical about y = 0. 

The eddies in figure 3 are generated by viscous entrainment, which is parti- 
cularly strong near the slit. The length scalein the y-direction, yc say, of the small 
eddy may be crudely estimated by the following argument. The deflected jet is 
approximately centred at x = x,. It is a low momentum jet for M2 << 1 (equation 
56), and at sufficient distance from the plane y = 0, inertia forces are certainly 
negligible, The spread of the deflected jet is then described by the equation 
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The relevant solutions depend on the similarity variable N*(x - x,)/y*, i.e. the 
spread is parabolic. The jet interacts with the wall x = 0 when 

(58)  y x yc = Mx: = R/N B 1. 

Note that pc/xs = RgN-f 9 1, (59) 

so that the eddy is extended in the y-direction. 

L 

FIGURE 3. Qualitative sketch of the probable streamline pattern when M2 .g 1. 
The eddies are generated by viscous entrainment. 

4.2. The effect of the presence of rigid boundaries at y = f yo 
The foregoing analysis is somewhat unrealistic in that the effect of the boundaries 
y = yo in the region x > 0 has been totally neglected. It is to be hoped that such 
neglect is legitimate, at any rate in certain regions of the flow, when yo > 1. 
However, i t  is now possible t o  predict at least qualitatively what the effect of 
rigid boundaries at y = f yo will be, even when yo is not large. There are essentially 
two possibilities when N < 1, M2 B 1. 

(i) NB < ycl (figure 4a). In this case, an essentiallyinviscid jet emergesfrom the 
slit and begins to be influenced by the walls y = &yo at a distance 

xo X N-l(l- yof) (60) 

downstream. A Hartmann profile is established for x > x,. Weak viscous entrain- 
ment will generate corner eddies as indicated. 

(ii) 1 9 N* > ycl (figure 4 b ) .  In  this case, the jet is stopped at xo x N-1 before 
it begins to interact with the walls y = & yo. As N increases, the region of jet-type 
flow shrinks in extent. Although the analysis does not permit us to increase N 
to order unity and larger, it is not difficult to predict what happens in this 
third case. 

(iii) N 9 1 (figure 4c). Here the jet is extinguished as soon as it emerges from 
the slit, and there is a narrow region of adjustment from one Hartmann profile 
(for x < 0) to the other (for x > 0). This situation is related to that considered by 
Hunt & Leibovich (1967) who studied Hartmann flow through a channel of 
varying cross-section under the conditions M 9 1, N > 1. They were able to 
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analyse the sudden adjustment ofa  Hartmann profile due to a sudden change of 
gradient of the channel walls-in which case the thickness of the adjustment 
region is O(N-*)-but were unable to analyse the type of situation considered 
here in which the cross-sectional area suddenly changes. In  the region of adjust- 
ment, V2 = a2/ax2, and consideration of the inertia-magnetic balance in (8) again 
suggests that the region of adjustment has thickness O(N-4) as indicated in 
figure (4c). 
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FIGURE 4. Qualitative sketch of the expansion of Hartmann flow with M 2  %= 1 at 

a sudden increase in channel width. 

In  the case M2 4 1, the width of the Moreau jet, from (50) and (52) is 

and this becomes comparable with yo when 

i.e. at 

There are three further possibilities, each giving rise to a distinctive pattern 
of flow: 

(iv) yo 4 M-1; in this case xo < x,, and the primary jet interacts with the walls 
y = & yo before it is stopped (cf. figure 4a). 

(v) M-1 < yo < M-l(R3/N)*; in this case the jet is stopped before it interacts 
with the walls y = f yo, but the deflected jets meet these walls before they inter- 
act  with the wall 2 = 0 (cf. figure 4b). 
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(vi) yo 9 M-l(R3/N)4, or equivalently yo $ yc; in this case, the deflected jets 
interact with the wall x = 0 before they meet the walls y = f yo (cf. figure 3). 

A situation similar to that depicted in figure 4 has been studied experimentally 
by Moreau (1966a, b).  The values of the parameters R and yo (in the notation of 
the present paper) were 2 x lo3 and 25 respectively. The Hartmann number M 
varied in the range 1 5 M 5 3. Qualitatively, the jet annihilation effect was 
demonstrated. It is not possible to make quantitative comparison between the 
theory, justifiable only when M 2  4 1 or M 2  9 1, and the experiments for which 

y=o  
(e) Rm * 1, insulating wall 

.\'=O 
(c) R,,> 4 1, insulating wall 

3' = 0 
(b )  R,,! Q 1, perfectly conducting wall 

J' = 0 
( d )  K,, S- 1, perfectly conducting wall 

FIGURE 5. The lines of force of the magnetic field when R,,, < 1 and when R, 1. In (a)  
and ( c )  the wall y = yo is insulating, and the current returns through the fluid outside the jet. 
In (b )  and (d), the wall y = yo is perfectly conducting, and it conducts the return current. 

M2 = O( 1). However, one feature of the experiments is a little unexpected. The 
extent AB (figure 4a) of the region of closed streamlines should vary approxi- 
mately as N-l when M 2  9 1 and as N-2 when M 2  < 1. The three strea.mline 
patterns inferred by Moreau from probe measurements suggest a dependence 
nearer to  N-4. Some further investigation over a much wider range of values 
of M would clearly be valuable. 

4.3. The effect of increasing R, 
The lines of force of the total magnetic field (i.0. including the perturbation due to 
the currents in the fluid) are sketched in figures 5 a and 5 b in the two cases (a)  in 
which the boundaries y = &yo are insulating and (b )  in which they are perfectly 
conducting electrodes. In  case (a), the current J induced in the jet returns through 
the fluid outside the jet, and in case ( b )  it  returns in current sheets on the electrodes 
y = f yo. In either case the maximum value of IB,I/Bo is O(R,), and this has so 
far been assumed small. 
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If we now allow R, to increase to order unity and larger, I B,I/Bo will certainly 
increase (although not necessarily in simple proportion to R,), and it seems likely 
that the lines of force in the two cases will then be as sketched in figures (5c) and 
(54. The induced component B, of the field does not affect the streamwise com- 
ponent of the jet, although it must affect the entrainment; it seems likely that the 
entrainment will be along the magnetic lines of force, i.e. that u and B will be 
parallel outside the jet (and of course outside boundary layers on any solid 
boundaries). 

The important result that a transverse field annihilates a jet cannot be affected 
by increasing R,, although the ‘stopping distance’ x, may now depend on R, as 
well as on N (and R also in the viscous case). Again for x 9 x,, the flow will 
asymptotically approach a Hartmann profile. 

FIGURE 6. Oblique injection of an inviscid jet into a transverse field. The parameter N is 
defined in terms of the x-component of velocity a t  the slit. 

4.4. Dejiexion of a je t  oblique to the applied field 

So far it has been assumed that conditions are symmetrical about the plane 
y = 0. However, if the jet, on emerging from the slit lyl < 1, x = 0, has a net 
momentum in (say) the positive y-direction, then this momentum is conserved, 
and the jet may be almost totally deflected in this direction (figure 6a) .  This 
behaviour resembles that of a jet directed into a transverse wind, although in 
that case, the jet penetrates an infinite distance in the x-direction (on inviscid 
analysis) (Taylor 1954), whereas in the magnetic problem considered here, it 
penetrates the same finite distance x, as for symmetrical injection. 

If the initial transverse momentum is small, then the jet may be still deflected 
into two jets, but the deflected jet in the negative y-direction will have a smaller 
momentum than that in the positive y-direction (figure 6b).  
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It is evident that the solution of the inviscid form of equation (la), viz. 

subject to the condition that a$/ay is prescribed on x = 0, is not unique, but 
physical considerations suggest that it can be rendered unique if the initial 
transverse momentum 

is also prescribed. 
4.5. Free jet in a transverseJield 

The behaviour of a free jet of conducting fluid such as mercury into a non- 
conducting environment such as air in the presence of a transverse field is very 
different. Suppose again that the jet is approximately two-dimensional, that it 
emerges from a slit on the wall x = 0, and that it is bounded by the surfaces 
y = ? yo(x). Suppose also that conditions at  x = k zo are such that no net current 
can flow in the z-direction, e.g. the jet might be bounded at x = k xo by the same 
non-conducting medium (e.g. air) that bounds it at  y = k yo(x). Then any current 
j, in the jet, must return through the jet, i.e. the total current 

Ft = (g) dY (64) 
x=o 

must vanish. This condition determines E,. Moreover, since the medium for 
lyl > yo(x) is non-conducting, there need be no pressure gradient, since there is 
no electromagnetic force in this region; i.e. ap/ax = 0. The (dimensionless) 
expression for the current becomes simply 

j ,  = N ( u  - U)? (65 )  

where Z(x) ( = &/yo(x)) is the average velocity at  the section x, and the inviscid 
equation of motion is 

( u g + v $ )  = -N(u-5) .  

Clearly if u = E, i.e. if u is constant across the jet cross-section, then there is no 
Lorentz force, and the inviscid jet is unaffected by the presence of the magnetic 
field. If u $. 21. at any section, then the Lorentz force is such as to accelerate the 
fluid where u < Z and to decelerate it where u > E, i.e. it tends to smooth out 
variation in the velocity across the jet. The Lagrangian solution of (66), analogous 
to (18), shows that differences in velocity u - 5 a t  any section x = xo are eliminated 
in a (dimensional) distance of order p(u - Z)/gBi  downstream of xo. Viscous forces 
again have negligible effect if the Hartmann number based on the slit width is 
large. 
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